Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602228

RESUMO

Self-assembled nanostructures such as those formed by peptide amphiphiles (PAs) are of great interest in biological and pharmacological applications. Herein, a simple and widely applicable chemical modification, a urea motif, was included in the PA's molecular structure to stabilize the nanostructures by virtue of intermolecular hydrogen bonds. Since the amino acid residue nearest to the lipid tail is the most relevant for stability, we decided to include the urea modification at that position. We prepared four groups of molecules (13 PAs in all), with varying levels of intermolecular cohesion, using amino acids with distinct ß-sheet promoting potential and/or containing hydrophobic tails of distinct lengths. Each subset contained one urea-modified PA and nonmodified PAs, all with the same peptide sequence. The varied responses of these PAs to variations in pH, temperature, counterions, and biologically related proteins were examined using microscopic, X-ray, spectrometric techniques, and molecular simulations. We found that the urea group contributes to the stabilization of the morphology and internal arrangement of the assemblies against environmental stimuli for all peptide sequences. In addition, microbiological and biological studies were performed with the cationic PAs. These assays reveal that the addition of urea linkages affects the PA-cell membrane interaction, showing the potential to increase the selectivity toward bacteria. Our data indicate that the urea motif can be used to tune the stability of a wide range of PA nanostructures, allowing flexibility on the biomaterial's design and opening a myriad of options for clinical therapies.

2.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961624

RESUMO

GLABRA2 (GL2), a class IV homeodomain leucine-zipper (HD-Zip IV) transcription factor (TF) from Arabidopsis , is a developmental regulator of specialized cell types in the epidermis. GL2 contains a putative monopartite nuclear localization sequence (NLS) partially overlapping with its homeodomain (HD). We demonstrate that NLS deletion or alanine substitution of its basic residues (KRKRKK) affects nuclear localization and results in a loss-of-function phenotype. Fusion of the predicted NLS (GTNKRKRKKYHRH) to the fluorescent protein EYFP is sufficient for its nuclear localization in roots and trichomes. The functional NLS is evolutionarily conserved in a distinct subset of HD-Zip IV members including PROTODERMAL FACTOR2 (PDF2). Despite partial overlap of the NLS with the HD, genetic dissection of the NLS from PDF2 indicates that nuclear localization and DNA binding are separable functions. Affinity purification of GL2 from plant tissues followed by mass spectrometry-based proteomics identified Importin α (IMPα) isoforms as potential GL2 interactors. NLS structural prediction and molecular docking studies with IMPα-3 revealed major interacting residues. Split-ubiquitin cytosolic yeast two-hybrid assays suggest interaction between GL2 and four IMPα isoforms from Arabidopsis. Direct interactions were verified in vitro by co-immunoprecipitation with recombinant proteins. IMPα triple mutants ( impα- 1,2,3 ) exhibit defects in EYFP:GL2 nuclear localization in trichomes but not in roots, consistent with tissue-specific and redundant functions of IMPα isoforms in Arabidopsis . Taken together, our findings provide mechanistic evidence for IMPα-dependent nuclear localization of GL2 and other HD-Zip IV TFs in plants. One sentence summary: GLABRA2, a representative HD-Zip IV transcription factor from Arabidopsis , contains an evolutionarily conserved monopartite nuclear localization sequence that is recognized by Importin α for translocation to the nucleus, a process that is necessary for cell-type differentiation of the epidermis.

3.
RSC Med Chem ; 14(9): 1722-1733, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37731704

RESUMO

Although effective vaccines have been developed against SARS-CoV-2, many regions in the world still have low rates of vaccination and new variants with mutations in the viral spike protein have reduced the effectiveness of most available vaccines and treatments. There is an urgent need for a drug to cure this disease and prevent infection. The SARS-CoV-2 virus enters the host cell through protein-protein interaction between the virus's spike protein and the host's angiotensin converting enzyme (ACE2). Using protein design software and molecular dynamics simulations, we have designed a 17-residue peptide (pep39), that binds to the spike protein receptor-binding domain (RBD) and blocks interaction of spike protein with ACE2. We have confirmed the binding activity of the designed peptide for the original spike protein and the delta variant spike protein using micro-cantilever and bio-layer interferometry (BLI) based methods. We also confirmed that pep39 strongly inhibits SARS-CoV-2 virus replication in Vero E6 cells. Taken together these data suggest that a newly designed spike protein RBD blocking peptide pep39 has a potential as a SARS-CoV-2 virus inhibitor.

4.
Integr Cancer Ther ; 22: 15347354231195323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646331

RESUMO

Extracts from Euglena gracilis have been shown to prevent cancer growth in mouse models. However, the molecular mechanism of this anti-cancer activity has not been determined nor has the effect of Euglena extracts on tobacco smoke carcinogen-induced carcinogenesis. Here, we investigate the hypothesis that this anti-cancer activity is a result of changes in the intestinal microbiota induced by oral administration of the extract. We found that a Euglena gracilis water extract prevents lung tumorigenesis induced by a tobacco smoke-specific carcinogen (NNK) in mice treated either 2 weeks before or 10 weeks after NNK injection. Both of these treatment regimens are associated with significant increases in 27 microbiota metabolites found in the mouse feces, including large increases in triethanolamine, salicylate, desaminotyrosine, N-acetylserine, glycolate, and aspartate. Increases in the short-chain fatty acids (SCFAs) including acetate, propionate and butyrate are also observed. We also detected a significant attenuation of lung carcinoma cell growth through the induction of cell cycle arrest and apoptosis caused by low levels of SCFAs. This study provides strong evidence of anti-cancer activity in Euglena gracilis extracts against tobacco smoke carcinogen-induced tumorigenesis and demonstrates that this activity is linked to increased production of specific gut microbiota metabolites and the resultant induction of cell cycle arrest and apoptosis of lung carcinoma cells.


Assuntos
Carcinoma , Euglena gracilis , Microbioma Gastrointestinal , Neoplasias Pulmonares , Poluição por Fumaça de Tabaco , Camundongos , Animais , Carcinógenos/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/prevenção & controle , Poluição por Fumaça de Tabaco/efeitos adversos , Carcinogênese/induzido quimicamente
5.
RSC Med Chem ; 14(4): 658-670, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122540

RESUMO

Proteins involved in immune checkpoint pathways, such as CTLA4, PD1, and PD-L1, have become important targets for cancer immunotherapy; however, development of small molecule drugs targeting these pathways has proven difficult due to the nature of their protein-protein interfaces. Here, using a hierarchy of computational techniques, we design a cyclic peptide that binds CTLA4 and follow this with experimental verification of binding and biological activity, using bio-layer interferometry, cell culture, and a mouse tumor model. Beginning from a template excised from the X-ray structure of the CTLA4:B7-2 complex, we generate several peptide sequences using flexible docking and modeling steps. These peptides are cyclized head-to-tail to improve structural and proteolytic stability and screened using molecular dynamics simulation and MM-GBSA calculation. The standard binding free energies for shortlisted peptides are then calculated in explicit-solvent simulation using a rigorous multistep technique. The most promising peptide, cyc(EIDTVLTPTGWVAKRYS), yields the standard free energy -6.6 ± 3.5 kcal mol-1, which corresponds to a dissociation constant of ∼15 µmol L-1. The binding affinity of this peptide for CTLA4 is measured experimentally (31 ± 4 µmol L-1) using bio-layer interferometry. Treatment with this peptide inhibited tumor growth in a co-culture of Lewis lung carcinoma (LLC) cells and antigen primed T cells, as well as in mice with an orthotropic Lewis lung carcinoma allograft model.

6.
Phys Chem Chem Phys ; 25(30): 20320-20330, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37219530

RESUMO

Nanoscale silver particles have growing applications in biomedical and other technologies due to their unique antibacterial, optical, and electrical properties. The preparation of metal nanoparticles requires the action of a capping agent, such as thiol-containing compounds, to provide colloidal stability, prevent agglomeration, stop uncontrolled growth, and attenuate oxidative damage. However, despite the extensive use of these thiol-based capping agents, the structure of the capping agent layers on the metal surface and the thermodynamics of the formation of these layers remains poorly understood. Here, we leverage molecular dynamics simulations and free energy calculation techniques, to study the behavior of citrate and four thiol-containing capping agents commonly used to protect silver nanoparticles from oxidation. We have studied the single-molecule adsorption of these capping agents to the metal-water interface, their coalescence into clusters, and the formation of complete monolayers covering the metal nanoparticle. At sufficiently high concentrations, we find that allylmercaptan, lipoic acid, and mercaptohexanol spontaneously self-assemble into ordered layers with the thiol group in contact with the metal surface. The high density and ordered structure is presumably responsible for their improved protective characteristics relative to the other compounds studied.

7.
Nanoscale ; 14(38): 14178-14184, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36124993

RESUMO

Interfacial water participates in a wide range of phenomena involving graphite, graphite-like and 2D material interfaces. Recently, several high-spatial resolution experiments have questioned the existence of hydration layers on graphite, graphite-like and 2D material surfaces. Here, 3D AFM was applied to follow in real-time and with atomic-scale depth resolution the evolution of graphite-water interfaces. Pristine graphite surfaces upon immersion in water showed the presence of several hydration layers separated by a distance of 0.3 nm. Those layers were short-lived. After several minutes, the interlayer distance increased to 0.45 nm. At longer immersion times (∼50 min) we observed the formation of a third layer. An interlayer distance of 0.45 nm characterizes the layering of predominantly alkane-like hydrocarbons. Molecular dynamics calculations supported the experimental observations. The replacement of water molecules by hydrocarbons on graphite is spontaneous. It happens whenever the graphite-water volume is exposed to air.

8.
Nanoscale Adv ; 4(7): 1741-1757, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36132158

RESUMO

Ordered nanoscale patterns have been observed by atomic force microscopy at graphene-water and graphite-water interfaces. The two dominant explanations for these patterns are that (i) they consist of self-assembled organic contaminants or (ii) they are dense layers formed from atmospheric gases (especially nitrogen). Here we apply molecular dynamics simulations to study the behavior of dinitrogen and possible organic contaminants at the graphene-water interface. Despite the high concentration of N2 in ambient air, we find that its expected occupancy at the graphene-water interface is quite low. Although dense (disordered) aggregates of dinitrogen have been observed in previous simulations, our results suggest that they are stable only in the presence of supersaturated aqueous N2 solutions and dissipate rapidly when they coexist with nitrogen gas near atmospheric pressure. On the other hand, although heavy alkanes are present at only trace concentrations (micrograms per cubic meter) in typical indoor air, we predict that such concentrations can be sufficient to form ordered monolayers that cover the graphene-water interface. For octadecane, grand canonical Monte Carlo suggests nucleation and growth of monolayers above an ambient concentration near 6 µg m-3, which is less than some literature values for indoor air. The thermodynamics of the formation of these alkane monolayers includes contributions from the hydration free-energy (unfavorable), the free-energy of adsorption to the graphene-water interface (highly favorable), and integration into the alkane monolayer phase (highly favorable). Furthermore, the peak-to-peak distances in AFM force profiles perpendicular to the interface (0.43-0.53 nm), agree with the distances calculated in simulations for overlayers of alkane-like molecules, but not for molecules such as N2, water, or aromatics. Taken together, these results suggest that ordered domains observed on graphene, graphite, and other hydrophobic materials in water are consistent with alkane-like molecules occupying the interface.

9.
J Chem Inf Model ; 62(17): 4066-4082, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35881533

RESUMO

The graphite-water interface provides a unique environment for polypeptides that generally favors ordered structures more than in solution. Therefore, systems consisting of designed peptides and graphitic carbon might serve as a convenient medium for controlled self-assembly of functional materials. Here, we computationally designed cyclic peptides that spontaneously fold into a ß-sheet-like conformation at the graphite-water interface and self-assemble, and we subsequently observed evidence of such assembly by atomic force microscopy. Using a novel protocol, we screened nearly 2000 sequences, optimizing for formation of a unique folded conformation while discouraging unfolded or misfolded conformations. A head-to-tail cyclic peptide with the sequence GTGSGTGGPGGGCGTGTGSGPG showed the greatest apparent propensity to fold spontaneously, and this optimized sequence was selected for larger scale molecular dynamics simulations, rigorous free-energy calculations, and experimental validation. In simulations ranging from hundreds of nanoseconds to a few microseconds, we observed spontaneous folding of this peptide at the graphite-water interface under many different conditions, including multiple temperatures (295 and 370 K), with different initial orientations relative to the graphite surface, and using different molecular dynamics force fields (CHARMM and Amber). The thermodynamic stability of the folded conformation on graphite over a range of temperatures was verified by replica-exchange simulations and free-energy calculations. On the other hand, in free solution, the folded conformation was found to be unstable, unfolding in tens of picoseconds. Intermolecular hydrogen bonds promoted self-assembly of the folded peptides into linear arrangements where the peptide backbone exhibited a tendency to align along one of the six zigzag directions of the graphite basal plane. For the optimized peptide, atomic force microscopy revealed growth of single-molecule-thick linear patterns of 6-fold symmetry, consistent with the simulations, while no such patterns were observed for a control peptide with the same amino acid composition but a scrambled sequence.


Assuntos
Grafite , Grafite/química , Simulação de Dinâmica Molecular , Peptídeos/química , Termodinâmica , Água/química
10.
Nutrients ; 14(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889858

RESUMO

A water extract derived from the isolated cell walls of Chlorella sorokiniana (C. sorokiniana, Chlorella water extract, CWE) was analyzed for the presence of lipopolysaccharide (LPS)-related material via the Limulus amebocyte lysate (LAL) assay and evaluated for its growth stimulation effect on the bone marrow cells and splenocytes in vitro cell cultures. The extract contained low levels of LPS-related material, and a mass spectrum suggested that the extract contained many components, including a low level of a lipid A precursor, a compound known as lipid X, which is known to elicit a positive response in the LAL assay. Treatment with the CWE dose- and time-dependently stimulated the growth of mouse bone marrow cells (BMCs) and splenocytes (SPLs). Treatment with the CWE also increased specific BMC subpopulations, including antigen-presenting cells (CD19+ B cells, 33D1+ dendritic cells and CD68+ macrophages), and CD4+ and CD8+ T cells, but decreased the number of LY6G+ granulocytes. Treatment with the CWE also increased cytokine mRNA associated with T cell activation, including TNFα, IFNγ, and granzyme B in human lymphoblasts. The present study indicates that the cell wall fraction of C.sorokiniana contains an LPS-like material and suggests a candidate source for the bioactivity that stimulates growth of both innate and adaptive immune cells.


Assuntos
Chlorella , Animais , Células da Medula Óssea , Linfócitos T CD8-Positivos , Parede Celular , Humanos , Lipopolissacarídeos , Camundongos , Baço , Água
11.
ACS Appl Bio Mater ; 5(10): 4599-4610, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35653507

RESUMO

Hydrogen bonding plays a critical role in the self-assembly of peptide amphiphiles (PAs). Herein, we studied the effect of replacing the amide linkage between the peptide and lipid portions of the PA with a urea group, which possesses an additional hydrogen bond donor. We prepared three PAs with the peptide sequence Phe-Phe-Glu-Glu (FFEE): two are amide-linked with hydrophobic tails of different lengths and the other possesses an alkylated urea group. The differences in the self-assembled structures formed by these PAs were assessed using diverse microscopies, nuclear magnetic resonance (NMR), and dichroism techniques. We found that the urea group influences the morphology and internal arrangement of the assemblies. Molecular dynamics simulations suggest that there are about 50% more hydrogen bonds in nanostructures assembled from the urea-PA than those assembled from the other PAs. Furthermore, in silico studies suggest the presence of urea-π stacking interactions with the phenyl group of Phe, which results in distinct peptide conformations in comparison to the amide-linked PAs. We then studied the effect of the urea modification on the mechanical properties of PA hydrogels. We found that the hydrogel made of the urea-PA exhibits increased stability and self-healing ability. In addition, it allows cell adhesion, spreading, and growth as a matrix. This study reveals that the inclusion of urea bonds might be useful in controlling the morphology, mechanical, and biological properties of self-assembled nanostructures and hydrogels formed by the PAs.


Assuntos
Hidrogéis , Nanoestruturas , Hidrogéis/química , Lipídeos , Nanoestruturas/química , Peptídeos/química , Ureia
12.
Nutrients ; 14(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35277036

RESUMO

The antitumor effects of a partially purified water extract from Euglena gracilis (EWE) and EWE treated by boiling (bEWE) were evaluated using orthotopic lung cancer syngeneic mouse models with Lewis lung carcinoma (LLC) cells. Daily oral administration of either EWE or bEWE started three weeks prior to the inoculation of LLC cells significantly attenuated tumor growth as compared to the phosphate buffered saline (PBS) control, and the attenuation was further enhanced by bEWE. The intestinal microbiota compositions in both extract-treated groups were more diverse than that in the PBS group. Particularly, a decrease in the ratio of Firmicutes to Bacteroidetes and significant increases in Akkermansia and Muribaculum were observed in two types of EWE-treated groups. Fecal microbiota transplantation (FMT) using bEWE-treated mouse feces attenuated tumor growth to an extent equivalent to bEWE treatment, while tumor growth attenuation by bEWE was abolished by treatment with an antibiotic cocktail. These studies strongly suggest that daily oral administration of partially purified water extracts from Euglena gracilis attenuates lung carcinoma growth via the alteration of the intestinal microbiota.


Assuntos
Carcinoma , Euglena gracilis , Microbioma Gastrointestinal , Neoplasias Pulmonares , Administração Oral , Animais , Pulmão , Neoplasias Pulmonares/prevenção & controle , Camundongos , Água/farmacologia
13.
Transl Oncol ; 16: 101337, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34990908

RESUMO

A novel peptide that interferes with the PD-1/PD-L1 immune checkpoint pathway, termed PD-L1 inhibitory peptide 3 (PD-L1ip3), was computationally designed, experimentally validated for its specific binding to PD-L1, and evaluated for its antitumor effects in cell culture and in a mouse colon carcinoma syngeneic murine model. In several cell culture studies, direct treatment with PD-L1ip3, but not a similar peptide with a scrambled sequence, substantially increased death of CT26 colon carcinoma cells when co-cultured with murine CD8+ T cells primed by CT26 cell antigens. In a syngeneic mouse tumor model, the growth of CT26 tumor cells transduced with the PD-L1ip3 gene by an adenovirus vector was significantly slower than that of un-transduced CT26 cells in immunocompetent mice. This tumor growth attenuation was further enhanced by the coadministration of the peptide form of PD-L1ip3 (10 mg/kg/day). The current study suggests that this peptide can stimulate host antitumor immunity via blockade of the PD-1/PD-L1 pathway, thereby increasing CD8+ T cell-induced death of colon carcinoma cells. The tumor site-specific inhibition of PD-L1 by an adenovirus carrying the PD-L1ip3 gene, together with direct peptide treatment, may be used as a local immune checkpoint blockade therapy to inhibit colon carcinoma growth.

14.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803858

RESUMO

Beta glucans are known to have immunomodulatory effects that mediated by a variety of mechanisms. In this article, we describe experiments and simulations suggesting that beta-1,3 glucans may promote activation of T cells by a previously unknown mechanism. First, we find that treatment of a T lymphoblast cell line with beta-1,3 oligoglucan significantly increases mRNA levels of T cell activation-associated cytokines, especially in the presence of the agonistic anti-CD3 antibody. This immunostimulatory activity was observed in the absence of dectin-1, a known receptor for beta-1,3 glucans. To clarify the molecular mechanism underlying this activity, we performed a series of molecular dynamics simulations and free-energy calculations to explore the interaction of beta-1,3 oligoglucans with potential immune receptors. While the simulations reveal little association between beta-1,3 oligoglucan and the immune receptor CD3, we find that beta-1,3 oligoglucans bind to CD28 near the region identified as the binding site for its natural ligands CD80 and CD86. Using a rigorous absolute binding free-energy technique, we calculate a dissociation constant in the low millimolar range for binding of 8-mer beta-1,3 oligoglucan to this site on CD28. The simulations show this binding to be specific, as no such association is computed for alpha-1,4 oligoglucan. This study suggests that beta-1,3 glucans bind to CD28 and may stimulate T cell activation collaboratively with T cell receptor activation, thereby stimulating immune function.


Assuntos
Antígenos CD28/metabolismo , Ativação Linfocitária/imunologia , Receptores Imunológicos/metabolismo , Linfócitos T/imunologia , beta-Glucanas/metabolismo , Antígenos CD28/química , Citocinas/metabolismo , Humanos , Células Jurkat , Modelos Moleculares , Ligação Proteica , Receptores Imunológicos/química , Termodinâmica , beta-Glucanas/química
15.
Nanoscale ; 13(10): 5275-5283, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33624666

RESUMO

Hydration layers are formed on hydrophilic crystalline surfaces immersed in water. Their existence has also been predicted for hydrophobic surfaces, yet the experimental evidence is controversial. Using 3D-AFM imaging, we probed the interfacial water structure of hydrophobic and hydrophilic surfaces with atomic-scale spatial resolution. We demonstrate that the atomic-scale structure of interfacial water on crystalline surfaces presents two antagonistic arrangements. On mica, a common hydrophilic crystalline surface, the interface is characterized by the formation of 2 to 3 hydration layers separated by approximately 0.3 nm. On hydrophobic surfaces such as graphite or hexagonal boron nitride (h-BN), the interface is characterized by the formation of 2 to 4 layers separated by about 0.5 nm. The latter interlayer distance indicates that water molecules are expelled from the vicinity of the surface and replaced by hydrocarbon molecules. This creates a new 1.5-2 nm thick interface between the hydrophobic surface and the bulk water. Molecular dynamics simulations reproduced the experimental data and confirmed the above interfacial water structures.

16.
J Chem Inf Model ; 60(7): 3577-3586, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32525311

RESUMO

Dopamine clearance in the brain is controlled by the dopamine transporter (DAT), a protein residing in the plasma membrane, which drives reuptake of extracellular dopamine into presynaptic neurons. Studies have revealed that the ßγ subunits of heterotrimeric G proteins modulate DAT function through a physical association with the C-terminal region of the transporter. Regulation of neurotransmitter transporters by Gßγ subunits is unprecedented in the literature; therefore, it is interesting to investigate the structural details of this particular protein-protein interaction. Here, we refined the crystal structure of the Drosophila melanogaster DAT (dDAT), modeling de novo the N- and C-terminal domains; subsequently, we used the full-length dDAT structure to generate a comparative model of human DAT (hDAT). Both proteins were assembled with Gß1γ2 subunits employing protein-protein docking, and subsequent molecular dynamics simulations were run to identify the specific interactions governing the formation of the hDAT:Gßγ and dDAT:Gßγ complexes. A [L/F]R[Q/E]R sequence motif containing the residues R588 in hDAT and R587 in dDAT was found as key to bind the Gßγ subunits through electrostatic interactions with a cluster of negatively charged residues located at the top face of the Gß subunit. Alterations of DAT function have been associated with multiple devastating neuropathological conditions; therefore, this work represents a step toward better understanding DAT regulation by signaling proteins, allowing us to predict therapeutic target regions.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas de Drosophila/química , Drosophila melanogaster , Proteínas de Ligação ao GTP/química , Animais , Dopamina , Drosophila melanogaster/metabolismo , Simulação de Dinâmica Molecular
17.
Biomed Pharmacother ; 127: 110166, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32361165

RESUMO

The partially purified water extract from Euglena gracilis (EWE) was evaluated for its antitumor and immunomodulatory effects in cell cultures and in a mouse orthotopic lung carcinoma allograft model. In two-dimensional cell culture, the EWE treatment inhibited cell growth of both murine Lewis lung carcinoma (LLC) and human lung carcinoma cells (A549 and H1299) in a dose- and time-dependent manner. In contrast, the growth of mouse bone marrow cells (BMCs), but not mouse splenocytes (SPLs), was stimulated by the treatment with EWE. In three-dimensional spheroid culture, spheroid growth of LLC cells was significantly attenuated by EWE treatment. In a mouse LLC orthotopic allograft model, pretreatment with EWE (150-200 mg/kg/day, via drinking water) three weeks prior to the LLC cell inoculation, but not post-treatment after LLC cell inoculation, significantly attenuated the growth of LLC tumors in immunocompetent syngeneic mouse lung. This tumor growth attenuation coincided with a significant decrease in the population of myeloid-derived cells, primarily neutrophils. Flow cytometric analysis revealed that the EWE treatment significantly attenuated growth of granulocytic myeloid-derived suppressor cells (gMDSC) in BMCs and that this decrease was due to induction of gMDSC-specific apoptosis and differentiation of monocytic MDSCs (mMDSC) to macrophages. The present study provides evidence that EWE pretreatment inhibits lung carcinoma growth mainly by stimulating host antitumor immunity through attenuation of growth of gMDSCs and decreasing the number of peripheral granulocytes. This study suggests that the partially purified extract derived from Euglena gracilis contains significant bioactive materials that prevent lung carcinoma growth.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Euglena gracilis/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/farmacologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/metabolismo , Fatores de Tempo , Água/química
18.
Integr Cancer Ther ; 19: 1534735419900555, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32009489

RESUMO

A colon cancer growth inhibitor partially purified from the isolated cell wall membrane fraction of Chlorella sorokiniana, here referred to as Chlorella membrane factor (CMF), was evaluated for its antitumor and immunomodulatory effects in cell culture and in a colon carcinoma mouse model. The CMF treatment dose- and time-dependently inhibited colon carcinoma cell growth in 2-dimensional cultures. Treatment with CMF also significantly inhibited the growth of colon carcinoma spheroids in 3-dimensional cell culture in coculture with T lymphocytes. In a mouse CT26 colon carcinoma peritoneal dissemination model, intraperitoneal injection of CMF (10 or 30 mg dry weight/kg body weight, every other day) dose-dependently and significantly attenuated the growth of tumor nodules via induction of tumor cell apoptosis. Evaluation of immune cell populations in ascites showed that CMF treatment tended to increase T lymphocytes but lower granulocyte populations. The present study suggests that the cell wall membrane fraction of Chlorella sorokiniana contains a bioactive material that inhibits colon carcinoma growth via direct cell growth inhibition and stimulation of host antitumor immunity. Hence, it is suggested that the Chlorella cell wall membrane extract or a bioactive substance in the extract is an attractive complementary medicine for cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chlorella/química , Neoplasias do Colo/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Parede Celular , Colo/patologia , Neoplasias do Colo/patologia , Imunidade , Injeções Intraperitoneais , Camundongos , Extratos Vegetais/administração & dosagem
19.
Toxins (Basel) ; 12(1)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861940

RESUMO

Snake bite envenoming is a public health problem that was recently included in the list of neglected tropical diseases of the World Health Organization. In the search of new therapies for the treatment of local tissue damage induced by snake venom metalloproteinases (SVMPs), we tested the inhibitory activity of peptidomimetic compounds designed as inhibitors of matrix metalloproteinases on the activities of the SVMP Batx-I, from Bothrops atrox venom. The evaluated compounds show great potential for the inhibition of Batx-I proteolytic, hemorrhagic and edema-forming activities, especially the compound CP471474, a peptidomimetic including a hydroxamate zinc binding group. Molecular dynamics simulations suggest that binding of this compound to the enzyme is mediated by the electrostatic interaction between the hydroxamate group and the zinc cofactor, as well as contacts, mainly hydrophobic, between the side chain of the compound and amino acids located in the substrate binding subsites S1 and S1 ' . These results show that CP471474 constitutes a promising compound for the development of co-adjuvants to neutralize local tissue damage induced by snake venom metalloproteinases.


Assuntos
Bothrops , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/toxicidade , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Metaloproteases/toxicidade , Fosfolipases A2/toxicidade , Mordeduras de Serpentes/tratamento farmacológico , Animais , Edema/induzido quimicamente , Edema/prevenção & controle , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Masculino , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptidomiméticos/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Mordeduras de Serpentes/patologia , Zinco/química , Zinco/farmacologia
20.
Nanomaterials (Basel) ; 9(12)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31771091

RESUMO

Currently, there is a great interest in nanoparticle-based vaccine delivery. Recent studies suggest that nanoparticles when introduced into the biological milieu are not simply passive carriers but may also contribute immunological activity themselves or of their own accord. For example there is considerable interest in the biomedical applications of one of the physiologically-based inorganic metal oxide nanoparticle, zinc oxide (ZnO). Indeed zinc oxide (ZnO) NP are now recognized as a nanoscale chemotherapeutic or anticancer nanoparticle (ANP) and several recent reports suggest ZnO NP and/or its complexes with drug and RNA induce a potent antitumor response in immuno-competent mouse models. A variety of cell culture studies have shown that ZnO NP can induce cytokines such as IFN-γ, TNF-α, IL-2, and IL-12 which are known to regulate the tumor microenvironment. Much less work has been done on magnesium oxide (MgO), cobalt oxide (Co3O4), or nickel oxide (NiO); however, despite the fact that these physiologically-based metal oxide NP are reported to functionally load and assemble RNA and protein onto their surface and may thus also be of potential interest as nanovaccine platform. Here we initially compared in vitro immunogenicity of ZnO and Co3O4 NP and their effects on cancer-associated or tolerogenic cytokines. Based on these data we moved ZnO NP forward to testing in the ex vivo splenocyte assay relative to MgO and NiO NP and these data showed significant difference for flow cytometry sorted population for ZnO-NP, relative to NiO and MgO. These data suggesting both molecular and cellular immunogenic activity, a double-stranded anticancer RNA (ACR), polyinosinic:poly cytidylic acid (poly I:C) known to bind ZnO NP; when ZnO-poly I:C was injected into B16F10-BALB/C tumor significantly induced, IL-2 and IL-12 as shown by Cohen's d test. LL37 is an anticancer peptide (ACP) currently in clinical trials as an intratumoral immuno-therapeutic agent against metastatic melanoma. LL37 is known to bind poly I:C where it is thought to compete for receptor binding on the surface of some immune cells, metastatic melanoma and lung cells. Molecular dynamic simulations revealed association of LL37 onto ZnO NP confirmed by gel shift assay. Thus using the well-characterized model human lung cancer model cell line (BEAS-2B), poly I:C RNA, LL37 peptide, or LL37-poly I:C complexes were loaded onto ZnO NP and delivered to BEAS-2B lung cells, and the effect on the main cancer regulating cytokine, IL-6 determined by ELISA. Surprisingly ZnO-LL37, but not ZnO-poly I:C or the more novel tricomplex (ZnO-LL37-poly I:C) significantly suppressed IL-6 by >98-99%. These data support the further evaluation of physiological metal oxide compositions, so-called physiometacomposite (PMC) materials and their formulation with anticancer peptide (ACP) and/or anticancer RNA (ACR) as a potential new class of immuno-therapeutic against melanoma and potentially lung carcinoma or other cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...